Abnormal synaptic plasticity and impaired spatial cognition in mice transgenic for exon 1 of the human Huntington's disease mutation.
نویسندگان
چکیده
Huntington's disease (HD) is an autosomal dominant progressive and fatal neurodegenerative brain disorder caused by an expanded CAG/polyglutamine repeat in the coding region of the gene. Presymptomatic Huntington's disease patients often exhibit cognitive deficits before the onset of classical symptoms. To investigate the possibility that changes in synaptic plasticity might underlie cognitive impairment in HD, we examined hippocampal synaptic plasticity and spatial cognition in a transgenic mouse (R6/2 line) expressing exon 1 of the human Huntington's disease gene containing an expanded CAG repeat. This mouse exhibits a progressive and fatal neurological phenotype that resembles Huntington's disease. We report that R6/2 mice show marked alterations in synaptic plasticity at both CA1 and dentate granule cell synapses, and impaired spatial cognitive performance in the Morris water maze. The changes in hippocampal plasticity were age dependent, appearing at CA1 synapses several weeks before they were observed in the dentate gyrus. Deficits in synaptic plasticity at CA1 synapses occurred before an overt phenotype. This suggests that altered synaptic plasticity contributes to the pre-symptomatic changes in cognition reported in human carriers of the Huntington' disease gene. The temporal and regional changes in synaptic plasticity within the hippocampus mirror the appearance of neuronal intranuclear inclusions, suggesting a relationship between polyglutamine aggregation and dysfunction.
منابع مشابه
Impaired synaptic plasticity in mice carrying the Huntington's disease mutation.
Cognitive impairment is an early symptom of Huntington's disease (HD). Mice engineered to carry the HD mutation in the endogenous huntingtin gene showed a significant reduction in long-term potentiation (LTP), a measure of synaptic plasticity often thought to be involved in memory. However, LTP could be induced in mutant slices by an 'enhanced' tetanic stimulus, implying that the LTP-producing ...
متن کاملLavandula angustifolia extract improves deteriorated synaptic plasticity in an animal model of Alzheimer’s disease
Objective(s):Neurodegenerative Alzheimer’s disease (AD) is associated with profound deficits in synaptic transmission and synaptic plasticity. Long-term potentiation (LTP), an experimental form of synaptic plasticity, is intensively examined in hippocampus. In this study we evaluated the effect of aqueous extract of lavender (Lavandula angustifolia) on induction of LTP in the CA1 area of hippoc...
متن کاملA combination drug therapy improves cognition and reverses gene expression changes in a mouse model of Huntington's disease.
Huntington's disease is a genetic disease caused by a single mutation. It is characterized by progressive movement, emotional and cognitive deficits. R6/2 mice transgenic for exon 1 of the HD gene with 150+ CAG repeats have a progressive neurological phenotype, including deterioration in cognitive function. The mechanism underlying the cognitive deficits in R6/2 mice is unknown, but dysregulate...
متن کاملBrain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington's disease.
Asymptomatic Huntington's disease (HD) patients exhibit memory and cognition deficits that generally worsen with age. Similarly, long-term potentiation (LTP), a form of synaptic plasticity involved in memory encoding, is impaired in HD mouse models well before motor disturbances occur. The reasons why LTP deteriorates are unknown. Here we show that LTP is impaired in hippocampal slices from pre...
متن کاملDepletion of rabphilin 3A in a transgenic mouse model (R6/1) of Huntington's disease, a possible culprit in synaptic dysfunction.
Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by progressive psychiatric, cognitive, and motor disturbances. We studied the expression of synaptic vesicle proteins in the R6/1 transgenic mouse model of HD. We observed that the levels of rabphilin 3A, a protein involved in exocytosis, is substantially decreased in synapses of most brain regions in R6/1 mice. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 13 شماره
صفحات -
تاریخ انتشار 2000